[[File:VR complex.svg|thumb|upright=1.35|A graph with The 11 light blue triangles form maximal cliques. The two dark blue 4-cliques are both maximum and maximal, and the clique number of the graph is 4.]]
In graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph is an induced subgraph of that is complete graph. Cliques are one of the basic concepts of graph theory and are used in many other mathematical problems and constructions on graphs. Cliques have also been studied in computer science: the task of finding whether there is a clique of a given size in a graph (the clique problem) is NP-complete, but despite this hardness result, many algorithms for finding cliques have been studied.
Although the study of complete graph goes back at least to the graph-theoretic reformulation of Ramsey theory by ,The earlier work by characterizing by forbidden complete and complete bipartite subgraphs was originally phrased in topological rather than graph-theoretic terms. the term clique comes from , who used complete subgraphs in to model of people; that is, groups of people all of whom know each other. Cliques have many other applications in the sciences and particularly in bioinformatics.
A maximal clique is a clique that is not a subset of any larger clique. Some authors define cliques in a way that requires them to be maximal, and use other terminology for complete subgraphs that are not maximal.
A maximum clique of a graph, , is a clique, such that there is no clique with more vertices. Moreover, the clique number of a graph is the number of vertices in a maximum clique in .
The intersection number of is the smallest number of cliques that together cover all edges of .
The clique cover number of a graph is the smallest number of cliques of whose union covers the set of vertices of the graph.
A maximum clique transversal of a graph is a subset of vertices with the property that each maximum clique of the graph contains at least one vertex in the subset.
The opposite of a clique is an independent set, in the sense that every clique corresponds to an independent set in the complement graph. The clique cover problem concerns finding as few cliques as possible that include every vertex in the graph.
A related concept is a biclique, a complete bipartite subgraph. The bipartite dimension of a graph is the minimum number of bicliques needed to cover all the edges of the graph.
Several important classes of graphs may be defined or characterized by their cliques:
Additionally, many other mathematical constructions involve cliques in graphs. Among them,
Closely related concepts to complete subgraphs are subdivisions of complete graphs and complete . In particular, Kuratowski's theorem and Wagner's theorem characterize by forbidden complete and complete bipartite subdivisions and minors, respectively.
Many different problems from bioinformatics have been modeled using cliques. For instance, model the problem of clustering gene expression data as one of finding the minimum number of changes needed to transform a graph describing the data into a graph formed as the disjoint union of cliques; discuss a similar biclustering problem for expression data in which the clusters are required to be cliques. uses cliques to model in food chain. describe the problem of inferring evolutionary trees as one of finding maximum cliques in a graph that has as its vertices characteristics of the species, where two vertices share an edge if there exists a perfect phylogeny combining those two characters. model protein structure prediction as a problem of finding cliques in a graph whose vertices represent positions of subunits of the protein. And by searching for cliques in a protein–protein interaction network, found clusters of proteins that interact closely with each other and have few interactions with proteins outside the cluster. Power graph analysis is a method for simplifying complex biological networks by finding cliques and related structures in these networks.
In electrical engineering, uses cliques to analyze communications networks, and use them to design efficient circuits for computing partially specified Boolean functions. Cliques have also been used in automatic test pattern generation: a large clique in an incompatibility graph of possible faults provides a lower bound on the size of a test set.. describe an application of cliques in finding a hierarchical partition of an electronic circuit into smaller subunits.
In chemistry, use cliques to describe chemicals in a chemical database that have a high degree of similarity with a target structure. use cliques to model the positions in which two chemicals will bind to each other.
|
|